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ABSTRACT

Fast sausage modes (FSMs) in flare loops have long been invoked to account for rapid quasi-periodic

pulsations (QPPs) with periods of order seconds in flare lightcurves. However, most theories of FSMs

in solar coronal cylinders assume a perfectly axisymmetric equilibrium, an idealized configuration

apparently far from reality. In particular, it remains to examine whether FSMs exist in coronal

cylinders with fine structures. Working in the framework of ideal magnetohydrodynamics (MHD),

we numerically follow the response to an axisymmetric perturbation of a coronal cylinder for which

a considerable number of randomly distributed fine structures are superposed on an axisymmetric

background. The parameters for the background component are largely motivated by the recent

IRIS identification of a candidate FSM in Fe XXI 1354 Å observations. We find that the composite

cylinder rapidly settles to an oscillatory behavior largely compatible with a canonical trapped FSM.

This happens despite that kink-like motions develop in the fine structures. We further synthesize the

Fe XXI 1354 Å emissions, finding that the transverse Alfvén time characterizes the periodicities in the

intensity, Doppler shift, and Doppler width signals. Distinct from the case without fine structuring,
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a non-vanishing Doppler shift is seen even at the apex. We conclude that density-enhanced equilibria

need not be strictly axisymmetric to host FSM-like motions in general, and FSMs remain a candidate

interpretation for rapid QPPs in solar flares.

Keywords: magnetohydrodynamics (MHD) — Sun: corona — Sun: magnetic fields —

waves
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1. INTRODUCTION

Rapid quasi-periodic pulsations (QPPs) with periods ranging from seconds to a couple of tens of

seconds are frequently seen in solar flare light curves measured in various passbands (see reviews by

Nakariakov & Melnikov 2009; Van Doorsselaere et al. 2016; Li et al. 2020; Zimovets et al. 2021). A

possible interpretation for these rapid QPPs is associated with fast sausage modes (FSMs) supported

in flare loops. The FSMs manifest axisymmetric oscillating property under a classical assumption

that the magnetic waveguides are considered as straight axisymmetric cylinders (Edwin & Roberts

1983; Roberts et al. 1984). Divided by cutoff wavenumbers, the FSMs possess two regimes: wave

energy is well confined in the trapped regime but is continuously lost to the surroundings when the

leaky regime arises. In both regimes, the periods of the FSMs are found to be determined by the

transverse Alfvén transit time, which typically evaluates to seconds in the corona. This makes the

FSMs a potential candidate to account for the rapid QPPs in solar flares.

A departure from the perfectly axisymmetric straight equilibrium is more reasonable in the struc-

tured solar atmosphere. For simplicity, we insist on straight equilibria throughout. A straight cylinder

with an elliptical cross-section is a natural consideration that breaks the axisymmetry (e.g., Rud-

erman 2003; Morton & Ruderman 2011; Guo et al. 2020). Actually, many pores and sunspots are

measured to have elliptical cross-sections (e.g., Keys et al. 2018; Aldhafeeri et al. 2021), and FSMs

have been proved to be supported in elliptical cylinders both theoretically (Erdélyi & Morton 2009;

Aldhafeeri et al. 2021) and observationally (e.g., Keys et al. 2018). Equilibria with more realistic

irregular cross-sections have been discussed in Aldhafeeri (2021). Furthermore, recent observations

by the Interface Region Imaging Spectrograph (IRIS) have revealed that FSMs are supported by

fine-structured flare loops (Tian et al. 2016, hereafter T16). As typical magnetic structures in the

solar corona, coronal loops are generally not monolithic in realistic measurements, but consist of fine

sub-structures instead (e.g., Aschwanden & Peter 2017; Reale 2014, for a review). The investiga-

tions associated with waves and oscillations in loops with fine structures have attracted substantial

attention, such as eigenmode analysis in two parallel loops (Luna et al. 2008; Van Doorsselaere et al.

2008; Robertson et al. 2010; Gijsen & Van Doorsselaere 2014) and studies of transverse oscillations
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in more complex multistranded loop systems with application of the T-matrix theory (Luna et al.

2010, 2019), which was first introduced to the solar context to study p-mode in sunspots by Bogdan

& Fox (1991) and Keppens et al. (1994). In addition, transverse waves or oscillations have been

examined from the initial value problem perspective in multistranded loops (Terradas et al. 2008;

Magyar & Van Doorsselaere 2016; Guo et al. 2019). However, these studies focus on transverse waves

or oscillations. Regarding FSMs, a forward step has been made by considering concentric shells as

the radial inhomogeneities of straight magnetic waveguides (Pascoe et al. 2007; Chen et al. 2015).

However, the axisymmetry remains.

To our knowledge, there is no study on FSMs in a non-monolithic loop with fine structures so

far and the existence of sausage modes in such kind of equilibrium remains unknown. We thus

perform a three-dimensional MHD simulation involving FSMs in a composite loop with randomly

distributed fine structures inside. This paper is organized as follows. Section 2 details the loop model

we considered, including the equilibrium and numerical setup. In Section 3 we present the results

and forward modelling. Section 4 summarizes the results, ending with some discussion.

2. NUMERICAL MODEL

2.1. Equilibrium Setup

We consider a loop model as a monolithic cylinder with fine structures randomly spread inside.

Note that this setup is our first attempt towards the non-axisymmetric equilibrium, it would be

better to retain the monolithic background for reference. The parameters of the loop are uniform

along the vertical direction. In the transverse direction, the density profile is given by

ρ(x, y) = ρmono(x, y) + ρFS(x, y) , (1)

where ρmono(x, y) and ρFS(x, y) represent density profiles of the monolithic background and the fine

structures, respectively. They are prescribed by

ρmono = ρe + (ρi − ρe)f(x, y) , (2)

ρFS = (ρi − ρe)f(x, y)g(x, y) , (3)
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where

f(x, y) = exp
[
−
( r
R

)α]
, (4)

with

r =
√
x2 + y2 , (5)

and

g(x, y) =

NFS∑
j=1

[
exp

(
−r̄αj

)
cos (πr̄j)

]
∣∣∣∣∣
NFS∑
j=1

[
exp

(
−r̄αj

)
cos (πr̄j)

]∣∣∣∣∣
max

, (6)

with

r̄j =

√
(x− xj)2 + (y − yj)2

RFS

. (7)

We consider an electron-proton plasma throughout. The mass density ρ is then connected to the

electron number density N through ρ = Nmp with mp being the proton mass. We specify the

internal loop density ρi and external loop density ρe in Equation (2) such that the corresponding

N is 5.0 × 1010cm−3 and 0.8 × 109cm−3, respectively. The loop length is fixed at L = 45Mm, and

the nominal loop radius is R = 5Mm. The radius of each fine structure is RFS = 0.8Mm. The

steepnesses of density profiles of the monolithic background and the fine structures are determined

by a parameter of α = 5. [xj, yj] in Equation (5) represents the position of the center of each fine

structure, which is supposed to be random in the monolithic region (|x, y| ≤ R). NFS represents

the number of fine structures, we take NFS = 20 in practical runs. Figure 1 shows the initial

snapshot of density distribution at z = L/2. In addition, the distribution of temperature follows the

same profile of the density of the monolithic background. We take the temperature inside the loop

as Ti = 10MK and external temperature as Te = 2MK. Furthermore, to maintain magnetostatic

pressure balance, the magnetic field has a variation from Bi = 50G in the internal region of the

monolithic cylinder to Be = 77.3G in the external medium. The resulting internal (external) Alfvén
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speed is vAi = 496km s−1 (vAe = 5965km s−1). The physical and geometrical parameters of the

monolithic component follow rather closely from the IRIS measurements of the composite flare loop

supporting a candidate FSM in T16.

2.2. Numerical Setup

Trying to excite FSMs in the composite loop, we adopt an axisymmetric initial velocity perturba-

tion, which is similar to the one used in Chen et al. (2016),

δvx(x, y, z; t = 0) = v0
r

σr
exp

[
1

2

(
1− r2

σ2
r

)]
sin
(πz
L

)(x
r

)
, (8)

δvy(x, y, z; t = 0) = v0
r

σr
exp

[
1

2

(
1− r2

σ2
r

)]
sin
(πz
L

)(y
r

)
, (9)

where v0 = 10km s−1 is the amplitude of the initial velocity. σr = 5.0Mm characterizes the extent of

the perturbation in the radial direction. See Figure 1 for the initial velocity field (black arrows) at

z = L/2. Note that our initial velocity perturbation is not intended to represent a realistic exciter.

Using this initial perturbation is computationally simple and can readily compare with the results in

monolithic loops.

To solve the three-dimensional ideal MHD equations, we use the PLUTO code (Mignone et al.

2007). A piecewise parabolic scheme is employed for spatial reconstruction. The numerical fluxes are

computed by the HLLD Riemann solver, and the second-order Runge-Kutta algorithm is used for

time marching. A hyperbolic divergence cleaning method is adopted to maintain the divergence-free

condition of the magnetic field. The computation domain is [−10, 10]Mm× [−10, 10]Mm× [0, L]. We

employ a uniform grid of 64 points from 0 to L in the z-direction, and 840 uniformly spaced cells in

the x- and y-direction, respectively.

The boundary conditions are specified as follows. We fix the transverse velocities at both ends of

the loop to be zero, while vz, Bx, By are set to have zero-gradients. The other variables are fixed as

their initial values. Outflow conditions are used in all the lateral boundaries.
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3. RESULTS

3.1. Oscillations in the Composite Loop

Inspired by the IRIS observation in T16, we excite axial fundamental sausage modes in the com-

posite loop, meaning that the axial wavenumber is π/L. Recall that the ratio between the loop

length and radius is L/R = 9, and the steepness of the transverse structuring of the monolithic loop

is α = 5, we can readily find that the normalized cutoff wavenumber in the monolithic background

without fine structures is kcR = 0.32, by solving pertinent eigenvalue problem in monolithic loops.

The cutoff wavenumber is smaller than the axial wavenumber, meaning that sausage modes in the

monolithic loop would be in the trapped regime. For a reference, we can also estimate the period of

the FSM being 16.4s in the monolithic loop.

Now we examine the oscillations in the composite loop after the initial velocity perturbation.

Figure 2 presents the profiles of velocity and magnetic field at four representative locations at the

loop boundary, namely [x, y, z] = {[−R, 0, L/2], [R, 0, L/2], [0,−R,L/2], [0, R, L/2]}. The oscillation

profiles of vx at y = 0 and vy at x = 0 show no significant damping, indicating a trapped mode.

Comparing Figure 2 (a) and (c) (or Figure 2 (e) and (g)), we find that vx (vy) at y = 0 (x = 0) are

out of phase. Meanwhile, the amplitudes of vx at x = 0 are relatively small. Similar properties can

also be found in the magnetic field curves. All the above properties indicate a typical breathing-like

motion in the whole loop since the four sample points are chosen axisymmetric. We find the period

of the oscillation is about 15s, which is close to the predicted period of an FSM in the monolithic loop

without fine structures. We thus say that the current composite loop supports an FSM, despite that

the loop is not axisymmetric with the appearance of randomly distributed fine structures therein.

Note that the vy curves in Figure 2 (a) and (c) present relatively long-time-scale periodicity. The

period is very close to the local Alfvén period (∼ 77.9s), indicating the excitation of Alfvén waves

around fine structures. A phase difference of π/2 can be observed between the By and vy profiles at

[x, y, z] = [±R, 0, L/2]. This is a typical signature of standing Alfvén waves (see Guo et al. 2020).

The Alfvén waves can be clearly observed near the fine structures at the loop boundary at y = 0,

hinting that these Alfvén waves originate from the oscillations of these fine structures.
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The dynamics of fine structures can be clearly revealed by examining the z-component of vorticity

(Ωz) at different instants, as shown in Figure 3. The vorticity is zero at the initial state, showing

no vortex of the initial perturbation. We find that the internal regions of fine structures possess an

opposite oscillating direction against their boundary, indicating kink-like motions that are rapidly

excited by the initial perturbation. Similar properties can also be found in the velocity field of

kink modes (e.g., Goossens et al. 2014; Guo et al. 2020). Resonantly converted Alfvén waves are

characterized by blue and red ripples around each fine structure (see also the associated animation

of Figure 3). Before proceeding, we examine the temporal evolution of vy in Figure 4(a). Blue

and red ripples near the loop boundary become more and more inclined, leading to an increase of

small structures at a given time. A similar property has often been observed in previous studies

(see Figure 12 in Howson et al. 2019 and Figure 4 in Guo et al. 2020). The increasing ripples are

usually interpreted as the phase mixing of the localized Alfvén waves. So a process involving resonant

conversion from kink modes to local Alfvén waves and subsequent phase mixing of Alfvén waves is

present in the fine structures. In addition, we see the distortion of the fine structures as time increases

due to the velocity shear between the fine structures and their ambient surroundings. This distortion

is reinforced by the phase mixing, inducing more substructures. We also find the appearance of blue

and red ripples around the loop boundary after about t = 30s. The ripples extend from the boundary

to the internal region of the loop.

We see small ripples in the external loop region in the velocity evolution in Figure 4 (a), which

can also be seen in Figure 3. Although it has been demonstrated that the FSM is in the trapped

regime, small amplitude oscillations can still be observed outside the loop region due to the scattering

of the substructures. To prove this, we perform a new simulation in the monolithic loop without

substructures and plot the vy profile in Figure 4 (b). No oscillating signals nor small structures can

be seen in Figure 4 (b), meaning that the small ripples in the external loop region are indeed from

the substructures.

Although the oscillations seem complex in the composite loop, the predominant wave mode in

the loop region is the FSM. A short-time-scale periodicity of the order of transverse Alfvén transit
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time can be seen in non-axisymmetric loops with fine structures, making it possible to interpret

the oscillations with periods of several seconds in observations with FSMs. The FSM remains when

considering different numbers and distributions of the strands. Only the amplitudes of kink-like

motions of the strands get varied as their locations with respect to the loop center vary. The

resonances can be seen in all cases unless the strands are located at loop center. In addition, a lower

resolution run with a set of 420 × 420 × 32 grid cells has been conducted. We find no significant

difference in the oscillation curves from those in Figure 2. Even though fewer ripples around the

strands resulting from phase mixing are seen, the above analysis is not influenced in the lower

resolution run.

In fact, sausage modes characterized by coherent breathing motions have also been studied in the

lower atmosphere, despite the irregular shape of the examined structures and the fine structuring

therein. In the context of p-mode interaction with sunspots, sausage modes are found in a bundle

of symmetric tubes, characterized by breathing motions of the tubes (Keppens et al. 1994). Unlike

the FSMs in coronal loops, the sausage motions appear in tightly packed sunspot fibrils and are

demonstrated as surface modes.

3.2. Observable Properties

Inspired by the fundamental FSMs measured in flare loops in T16, we forward-modelled the nu-

merical results by using the FoMo code (Van Doorsselaere et al. 2016) to obtain their observational

signals. We perform the synthetic process by using the Fe XXI 1354 Å spectral line, which has been

considered by Shi et al. (2019) in their forward modeling effort associated with the above-mentioned

IRIS measurements. In our case, however, the coronal loop with substructures therein is a more re-

alistic consideration. The possible influence of substructures on the detection of FSMs in flare loops

is worth examining. We note further that the coronal approximation, inherent to FoMo, applies to

Fe XXI 1354Å line despite the large values of the electron density (see Shi et al. 2019, for details).

Figure 5 illustrates the synthetic intensity, Doppler velocity and line width at loop apex with a

line-of-sight (LoS) along the y-axis. The intensity shows a periodic enhancement, indicating the com-

pression induced by the FSM. This is similar to the monolithic loop results obtained by considering
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the Fe XXI 1354 Å in Shi et al. (2019) and lower temperature lines in Antolin & Van Doorsselaere

(2013). Meanwhile, fine structures are seen all the time in the current intensity variations along the

x-axis. Though the blue- and redshifts are disturbed by the fine structures, the overall periodicity

of half the FSM period can be observed in the Doppler shifts. Recall that the LOS is perpendicular

to the z-axis in the present model, we see a net Doppler velocity of 5 km s−1 due to the broken

axisymmetry in the current model. This has not been reported in previous literature concerning

axisymmetric oscillations in a monolithic loop, in which red- and blueshifts cancel out at loop apex.

This variation in Doppler shift relax the limitation that the LOS should not be perpendicular to a

loop axis to obtain a non-zero Doppler velocity. As for the line width, a periodicity of half the FSM

period shows up again, illustrating a peanut-like shape, which has been discussed in Shi et al. (2019).

4. DISCUSSION AND CONCLUSIONS

FSMs in flare loops have long been invoked to interpret rapid QPPs with periods of several seconds

in flare lightcurves. Recent IRIS observations manifest FSMs in fine-structured flare loops. We thus

model a monolithic flare loop with randomly distributed fine structures therein. By considering an

axisymmetric perturbation, we find that the composite cylinder rapidly settles to a trapped FSM. A

forward model based on the numerical results is further obtained, showing the observable properties

of the FSM in the Fe XXI 1354 Å spectral line. The periodicities characterized by the Alfvén transit

time can be observed in the intensity, Doppler shift, and line width signals. A periodic Doppler shift

can be seen at the loop apex, illustrating a significant difference from the equilibrium without fine

structuring. In general, magnetic equilibria need not be perfectly axisymmetric to support FSMs,

which remain a candidate interpretation for rapid QPPs in solar flares.

The short periodic signals that appear in the non-axisymmetric substructured loop relax the strict

definition of FSMs in coronal loops. In the corona, complex density distribution such as substructures

in flare loops is still an observational obstacle for unambiguous identifications and measurements of

FSMs. Our current results thus bring more confidence to the identification of FSMs in such kind of

complex loop structure and the interpretation of rapid QPPs.
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In reality, flare loops are more complex and dynamic than the current model. Chromospheric

evaporation has been reported in the impulsive phase in T16. Simulations by Ruan et al. (2019)

demonstrated that turbulent interactions may be induced by the chromospheric evaporation in a

magnetic arcade, leading to the fast mode associated QPPs in soft X-ray. So both observations

and simulations indicate a close relation between the evaporation and QPPs. However, this process

cannot be evaluated in our current model. Although the curvature and many realistic processes

have not been included, we stress again that the current cylinder aims to achieve a conceptional

understanding of the existence of FSMs in the non-axisymmetric structure, rather than a full picture

of a flare event. Realistic information has been considered in recent models (e.g., Cheung et al. 2019;

Ruan et al. 2020), where X-ray lightcurves that are used for quantifying QPPs are obtained.

Another realistic information in flare loops is gravitational stratification. Including the stratification

would induce a density reduction from loop top to bottom. The density scale height, which can be

roughly estimated by kBTi/µmpg with kB the Boltzmann constant and µ the mean molecular weight,

would be 500 Mm. This value is much larger than the loop height (L/π ∼ 14Mm) when deformed

to a semi-circle. So the density would change only 3% from the loop top to bottom in the current

model. Once the stratification is considered, the Rayleigh-Taylor dynamics that are believed to be

important in prominences (e.g., Keppens et al. 2015; Terradas et al. 2015) is worth noticing at loop

apex. In the current model, the largest growth rate of the Rayleigh-Taylor instability can be roughly

obtained by γ =
√
gπ/R ∼ 0.01s−1 (Goedbloed et al. 2019, and references therein). This means that

the growth time of the Rayleigh-Taylor instability is much larger than the oscillation period.

The origins of QPPs are attributed to various mechanisms. Apart from the aforementioned chro-

mospheric evaporation, repetitive magnetic reconnection can account for long-period QPPs (e.g.,

Ofman & Sui 2006). MHD oscillation is also a possible candidate to account for these QPPs, as

demonstrated in T16. Using the FSM to interpret the the phase-difference between the intensity

and Doppler shift seems more reasonable, and this interpretation is supported by forward models

(Antolin & Van Doorsselaere 2013).
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One caveat of the present model might be the composite loop seems artificial. As a first step

towards the non-axisymmetry, a monolithic loop with substructures is worth considering since the

well-known results in monolithic loops (e.g., Guo et al. 2016; Shi et al. 2019) can be a reference

for the new findings. Besides, it would not be easy to unambiguously exclude the possibility of

substructures interspersing a monolithic loop. Fine structures can also be induced by transverse

oscillations in a monolithic loop (e.g., Antolin et al. 2014). Although the pre-existing fine structures

are different from the transverse wave-induced ones, the similar strand-like structures manifested in

forward models indicate that the two scenarios are not easy to distinguish. In addition, fine structures

play a role to break the axisymmetry of the monolithic background. Although this can be readily

achieved by considering a single strand inside the monolithic loop, a considerable number of strands

are needed (e.g., Peter et al. 2013).

The authors acknowledge the funding from the National Natural Science Foundation of China

(41974200, 11761141002, 41904150).
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APPENDIX

A. OSCILLATION PROFILES IN A CYLINDRICAL COORDINATE

The radially and azimuthally averaged evolutions in velocity and magnetic field along the loop

boundary at z = L/2 are shown in Figure 6. The quantity q are calculated by

〈q〉 =
1

2πR

∫
l

qdl , (A1)

where q represents the radial (azimuthal) velocity vr (vφ) and the radial (azimuthal) magnetic field

Br (Bφ). l is the length along the loop edge at z = L/2. A similar oscillation property as in the main

text can be seen in both 〈vr〉 and 〈Br〉 profiles. A trapped FSM with a period of about 15s shows up.

However, the Alfvén signal in 〈vφ〉 and 〈Bφ〉 evolutions can hardly be seen since the Alfvén waves

appear locally near the fine strands and are naturally hidden by the averaged calculation.

B. ALFVÉN RESONANCE EXAMINATION

The density variation in the substructures inside the loop leads to local Alfvén resonance. Figure 7

shows the strength of local velocity v =
√
v2x + v2y at loop apex at different time. The largest values

of the velocity in each panel are larger than the amplitude of initial perturbation (10kms−1), and

their locations correspond to the positions of local resonance (see also Fig.5 in Howson et al. 2020).

Local Alfvén frequency ωA = πvA/L is also contoured. We see the resonance happens at about

0.05rad s−1 ≤ ωA ≤ 0.13rad s−1, this range roughly outlines the locations of the largest values of the

velocity around each strand. The Alfvén frequency in this range is between the internal and external

one. Comparing with Figure 3 we find that the resonance locations are right around the places where

the fine structures present kink-like motions. So the resonant conversion from kink motions to local

Alfvén waves in the fine strands is proved. Note that the Alfvén signals in Figure 2 shows a period

of about 77.9s, which corresponds to the local Alfvén frequency of 0.08rad s−1 at [x, y] = [5Mm, 0]

in Figure 7.
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C. OBSERVABLE PROPERTIES IN ANOTHER LOS ORIENTATION

Another LOS angle of π/4 with respect to the x-axis is examined in Figure 8. The oscillation

properties are similar to that in the main text with an LOS along the y-axis. A similar periodicity as

in Figure 5 can be seen here. However, the distribution of the intensity in the x-direction is different

from the one in the main text. We see the Doppler velocity has a slight drop in Figure 8. The line

width maps are similar but slightly larger in Figure 8. All the differences presented here reveal the

non-axisymmetry of our loop.

Note that the resolution in Figure 5 and Figure 8 remains the numerical one, which is much higher

than that of the real instruments. So the fine structures in Figure 5 and Figure 8 can hardly be

observed in reality. Although the strands in our loop are not so thin and can be measured by many

instruments that have a resolution of about 1 arcsec, to recognize more structures due to the overlap

of different strands, for instance, may need a much higher resolution. A similar discussion about the

potential of future instruments can be found in Guo et al. (2019).
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Figure 1. Initial density snapshot of loop cross-section at loop apex (z = L/2). The density is in the

unit of background density ρe. Black arrows represent the initial velocity field. Red asterisks denote four

representative positions analyzed in the following. The snapshot is taken from the animation attached to

this figure. The animation evolves from t = 0 to t = 300s. The duration is 30s.
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Figure 2. Left: temporal evolution of vx (black lines) and vy (blue lines) sampled at four representative

positions as labelled at z = L/2. Right: similar to the left column but for the magnetic field.
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Figure 3. z-component of the vorticity at z = L/2 at different instants. The snapshots are taken from the

animation of the Ωz attached to this figure. The animation evolves from t = 0 to t = 300s. The duration is

30s.
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Figure 4. (a) Temporal evolution of vy at z = L/2. (b) Similar to (a) but in a monolithic loop with no

fine strands.
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Figure 5. Temporal evolution of synthetic intensity, Doppler velocity, and line width in the Fe XXI 1354

Å spectral line at z = L/2 with an LoS along the y-axis.
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Figure 6. Left panel shows the radially (azimuthally) averaged velocity evolution 〈vr〉 (〈vφ〉) along the

loop edge at z = L/2. Right: similar to the left column but for the magnetic field.
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Figure 7. Local velocity v =
√
v2x + v2y at z = L/2 at different instants. Alfvén frequency ωA is contoured

at each instant.
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Figure 8. Temporal evolution of synthetic intensity, Doppler velocity, and line width in the Fe XXI 1354

Å spectral line at z = L/2 with an LOS of π/4 with respect to the x-axis.
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